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Abstract

We state mean ergodic theorems with rates of approximation for a new class of operator
families. Our result provides a unified approach to convergence rates for many particular
strongly continuous solution families associated to linear evolution equations such as the
abstract Cauchy problem of the first and second order, and integral Volterra equations of
convolution type. We discuss in particular, applications to a-times integrated cosine families,
k-convoluted semigroups and integral resolvents.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The semigroup approach to the study of differential equations has motivated
versions of the classical ergodic theorems for families of operators such as cosine
functions, resolvent families, r-times integrated semigroups, and more generally for
r-times integrated solutions families [4,11,12,23]. Our aim is to develop the ergodic
theorems with rates of approximation for (a, k)-regularized families, a notion which
includes that of r-times integrated solution family as well as k-convoluted
semigroups, r-times integrated cosine families and integral resolvents among others
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for which, to our knowledge, rates of approximation and ergodic limits have not
been previously studied.

The results we present in this article are pretty much inspired by the works of
Shaw [18-20,22]; in particular, paper [23] and the references therein, also by the same
author. In [23], Shaw uses the notion of ergodic nets to deduce the strong ergodic
and uniform ergodic theorems with rates for r-times integrated solution families
associated to the linear Volterra equation of convolution type u(f) =f(¢)+
A(axu)(t), t>0, obtaining convergence rates of ergodic limits and approximate
solutions of the equation Ax = y.

We assume that X is a complex Banach space and let 4 be a closed linear
unbounded operator with domain D(A4) defined on X. Consider an arbitrary
strongly continuous function R:R, —%(X). Suppose that there exist constants
M, >0 such that

IR()]|< Me™,  1>0. (1)

Then in such cases, the Laplace transform

R(A)x = / v e MR(f)xdt = lim e MR(f)x dt
0

— 00
T 0

exists for all 2eC with Re 4> and all xe X and defines a bounded operator R(/)
on X.

Definition 1. Let k,ae Ll (R.) be Laplace transformable functions and assume there
is an w € R such that d(2)#0 and k(1) #0 for all .>w. We call A the generator of an
(a, k)-regularized family if there exists a strongly continuous function R: Ry — B(X)
such that (1) holds, ﬁep(A) for all 2> and

KON = () A) " = / ¢ R(s) ds 2)
0
for all 2> w. In this case, R is called the (a,k)-regularized family generated by A.

In this paper, we study the behavior, as t — oo, of the following family of bounded
and linear operators:

m/o a(t—s)R(s)xds; xeX, t>0. 3)

The family (3) corresponds to the generalized means of the («, k)-regularized family
{R(#)},>¢- In the following examples, we show that the (a,k) regularized resolvent
family {R(¢)},- is well known for particular choices of the pair (a, k).

A[x =

Example 1. Suppose that a(¢) = 1 and k(z) = 1. Then, {R(t)},-, corresponds to a Cy
semigroup generated by A (see [8]) and (3) is the Cesaro mean

1 t
A,x:;/ T(s)xds; xeX, t>0. (4)
0
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There is an extensive literature about the asymptotic behavior of (4) and its
consequences; see e.g. [1,3] and the references therein.

Example 2. If a(r) =1 and k(t) =%, neNy. Then {R(7)},5, corresponds to an

nl?
n-times integrated semigroup (see [10]) and (3) is the average:
n st
A,x:(nJr ) / R(s)xds; xeX, t>0. (5)
0

M+l

Ergodic Theorems for n-times integrated semigroups have been studied in e.g. [21].

Example 3. If k() = 1 and a is arbitrary, then {R(¢)},., corresponds to a resolvent
family (see [17]) and the Césaro type means are

1)(1)/0a(ts)R(s)xds; xeX, t>0, (6)

Atx:(l*a

whose rates of approximation and ergodic theorems are studied in [4,12].

Example 4. Let a(7) = 1 and k(1) = 5y, > — 1. Then
(ae+2) (7
Ax :%/0 R(s)xds; xeX, t>0 (7)

is a type of means whose convergence rates and ergodic limits have been previously
considered by Shaw in [20, Theorem 5], and also ergodic properties, in case of o = n,
in [19].

Example 5. Suppose that k(¢) :#TH), r>0 and a is arbitrary. Then {R(7)},5,
corresponds to an r-times integrated resolvent family. The means are

_M tCl — S S)xX ds, X
A,x_(ﬂ,*a)(l)/o (t—s)R(s)xds; xeX, t>0. 8)

The above-cited examples show us that the choices of the pair (a, k) classifies
different families of strongly continuous operators in B(X); this fact can be used not
only to unify certain earlier results, but also to strengthen and extend these results
and to obtain new results. For instance, consider the following examples:

Example 6. Let a(f) =t and k(z) = m Then, R(?) is the a-times integrated cosine
family and the means are

T(e+3) (!
A,x:ﬂT /0 (t—s5)R(s)xds; xeX, t>0. 9)
The particular case o = 1 was considered before by Cioranescu [5], in order to
characterize the infinitesimal generator of a strongly continuous sine function.

However, ergodic properties were not investigated.
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Example 7. Let a(z) = 1 and k is arbitrary. Then, R(¢) is a k-convoluted semigroup,
see [6,7]; those ergodic properties, to our knowledge, have not been previously
studied. In this case, the averages (3) are given by

1 t
A,x:m/o R(s)xds; xeX, t>0. (10)

Example 8. Let a(7) = k(¢) be arbitrary. In this case, R(?) is the integral resolvent and
our definition gives us a slight modification of the concept introduced in [17,
Definition 1.6].

The ergodic theorems developed in this article include all the above-cited examples
with their corresponding means (4,),. ,. Furthermore, we give a new formulation of
the previous results obtained by Shaw [23] to study the convergence of ergodic
limits with rates for r-times integrated solution families; see Remark 3 at the end of
Section 2.

Henceforth, we assume the following conditions, which will be called
condition (C): Let a(t) be positive and k(¢) nondecreasing and positive as well,
satisfying

(1) flim (kl:(cg(t) 0
k(t)(1 * a)(1)

(C2) swp = =%
. (axaxk)(t)

(@) Jim = -~

Remark 1. The fact that k(¢) is nondecreasing implies that (k x a)(¢) < (1 x a)(2)k(t)

for all >0. Hence, (1*;)(,)<% and then it follows that (1 % a)(¢) > oo as t— o0, by

(C1). These remarks will be needed in the following sections.

2. Ergodic theorems with rates of approximation

We first recall the following definition due to Shaw from [18], and this will be the
main tool in the development of this article.

Definition 2. Suppose A4 is a closed linear operator with domain D(A4) defined on a
complex Banach space X, and let 4, and B, be two nets of bounded operators on X
satisfying

(E1) sup, || 4./ <M,

(E2) R(By)=D(A) and B,A<AB, = I — A, for all «,

(E3) R(A,)=D(A) for all « and ||44,|| = O(e(x)) with e(a) >0,
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(E4) Bix* = (a)x* for all x* € R(A)™ with |¢(a)|— oo,

(E5) |4yl = O(f(2)) (resp. o(f(«))) implies [[B,y|| = O(f(x)/e(e)) (resp.
o(f(a)/e(a)), where e and f are such that 0<e(a)<f(«) and f(a)—0.

The net (4,), is called an A-ergodic net and (B,), is called the companion net.

Remark 2. The functions e and f" act as estimators of the convergence rates of (4,x),
and (B,y),, which, in practical applications, approximate the ergodic limit and the
solution of the equation Ax = y, respectively.

Let xe X be given and define

t N
B,x—m /0 a(l—s)/o a(s —r)R(r)xdrds (11)
for all >0. We will prove that (4,)
the companion net.

Under the hypothesis that k() is continuous, it was shown by Lizama [13]
(Proposition 3.1) that Definition 1 is equivalent to the following three
properties:

(R1) R(0) = k(0)1;

(R2) R(t)xe D(A) and AR(f)x = R(t)Ax for all xe D(A) and ¢>0;

(R3)

defined by (3) is A-ergodic and that (B),. , is

t>0

R(t)x = k(t)x + /t a(t — s)AR(s)x ds (12)
0

for all xe D(A4) and 7>0.
In the sequel, we will always assume that k(¢) is continuous.
Let P and B, be the operators defined by

Px = lim A,x; Byy= lim B,y
t— 0 t— 0
on their maximal domains, respectively. The family {4,} is said to be strongly
(resp. uniformly) ergodic if D(P) = X and A;,x— Px as t— oo for all xeX (resp.
||4, — P||>0as t— c0.)
The rates of convergence of ergodic limits are characterized by means of the K-
functional and the relative completion, which we recall as follows:

Let X be a Banach space with norm || - ||, and ¥ a submanifold with seminorm
|| -||y- The K-functional is defined by

K(t,x) =Kt x, X, ¥, || -[ly) = inf {[lx = ylly +1llylly}

If Y is a Banach space with norm || - ||y, the completion of Y relative to X is
defined as

YYo= {xeX: there exists {x;,} < Y such that lim ||x, —x||y =0
m— o0

and sup [|xn,|| < oo}.
m
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Since the operator By : D(B;) < Ran(A)— Ran(A) is closed, its domain D(B;) is a
Banach space with respect to the graph norm. Let By:D(By)<Ker(A)@®
Ran(A)— Ker(A) ® Ran(A) be the operator By(x + y) = B;y; Hence, its domain
D(B)) is also a Banach space with respect to the graph norm, and

(D(B) 1 = Ker(4) @ (DB

Our first main result in this paper is the following:

Theorem 1 (Strong Ergodic Theorem with rates). Let A be the generator of an (a, k)-
regularized family {R(t)},- such that

IR(0)|| < Mk(t) for all 1>0.

Suppose that (A;),- , and (B;),- , are defined by (3) and (11), respectively. Then, under
condition (C) the following are satisfied:

(i) The mapping Px =lim,, ,, A,x is a bounded linear projection with Ran(P) =
Ker(A), Ker(P) = Ran(A), and

D(P) = Ker(A)® Ran(A) = {xe X;{A,} has a weak cluster point}.

For 0<f<1 and xe Ker(A) ® Ran(A4), we have

B
e :OQ%] )

<> ﬂ X er an . - & '
K((a*k)(z)’ Ker(4) & Ran( ), D(Bo), | ”B°> 0@@*!«)@])

©XG[D(BO)]K@~<A)@W (in case f=1).
(i) By = —lim,_ Wlm(a xax R)(t)y is the inverse operator A;' of the
restriction Ay = A|W of A to Ran(A); it has range Ran(B;) = D(A)n Ran(A)

and domain D(B)) = A(D(A)nRan(A)). Moreover, for each ye D(By), By is the
unique solution of the functional equation Ax = y in Ran(A), and we have for 0<f <1,

| (=0

(axk)(1)

KO s W) k(t) 1"
k(8 B R4 D(B) | ||B,>0<[<a*k)(,)}>

< yed(D(4)n[D(B1)]

(axaxR)(1)y + A7y

—RM(A)) (in case p=1).

(iii) Ran(A) is not closed if and only if for every (some) 0<f<1 there exists an
element yge Ran(A) such that

p /
||A,y,,||:o<[w’33(l)} ) <||A,yﬁ||¢o<[m’j,3®} ))
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Proof. We will prove that the net (4,),. , is A-ergodic and (B;),.. , is the companion
net, with
k(7)
) =——"t
W= tan)

for all >0, according to Definition 2.
(E1) Since ||R(s)|| < Mk(s) for all s=0 and a(¢), k(¢) are nonnegative functions, we
obtain

|| Aex]] = H( )(z)/ a(t — s)R(s)x ds

k*a /0 a s) ds||x||
= M||x]|

and f(1)=e()’, 0<p<l,

for all xe X and ¢>0.

(E2) For xeX and ¢>0, define S(f)x = [; a(t — s)R(s)x ds. Then, by (R2) we
obtain for all xe D(A) that S(¢)xe D(A4) and AS(¢)x = S(¢)Ax. Then, B;xe D(A) and
AB,;x = B,Ax for all xe D(A) and all 1>0. Since Ran(S(t))=D(A) (see [13, Lemma
2.2])) and 4 is closed we get B;xe D(A) for all xe X, that is Ran(B;)=D(A) and
B, A<= AB, for all t=0. On the other hand,

ABx :m /Ota(t —s) [ /Os a(s —r)AR(r)x dr| ds

_(k*_al)(z) /Ola(t — 5)[R(s)x — k(s)x] ds

= — A;x + x.

Hence, AB, = I — A, for all t>0.

(E3) For all 1>0, define the family of operators S(¢) as in (E2) above. Since
Ran(S(t))=D(A) it follows that R(A;)=D(A) for all ¢=0. Then using (C1) we
obtain

[|44,|| = Hk*la) /Ot a(t — s)AR(s)x ds

H k*a

<(M+1)

k(l)
(kxa)(t)

Hence, [|44,]| = O(z145) = O(e(r)).

(E4) Let x*eN(A*). Then
(X, R ()x") = <x,k(l)x* + /ta(l —5)R*(s)A"x" ds>
0
= (X, k()x™)

[[x]|>0" as t—o0.
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for all xe X. Thus, R*(#)x* = k(#)x* and hence, if we define ¢(7) = mfot a(t —
s)(a * k)(s) ds we obtain

***_71 fa —s Sasfr “(r)x* dr ds
B =i L =) [ ats=nR 0 dra
-1

:(k*a)(t){/ota(t — ) /Osa(s —1)k(r) drds} x*

:WU;““‘”(MM@) dS}x*
=o(1)x",

where, in view of (C3),

(axaxk)(t)

lp(2)] :W—mo as t— .
(ES) Let ye X be such that
k() 1"
Moll<mo) o] o<psi,

and define f(¢) = (). Since (k%t))(t)_)o as t— oo implying that (%)lfﬂ<l for
large ¢ and 0< i< 1. Thus, O<e(?)<f(¢) as t— o0, and

1 t
1831 =| gz [ ot =)k + )

X (m/oxa(s —r)R(r)y dr) ds

= (k*lW/o a(t — s)(k x a)(s)Asy ds

1

(

— /Ota(t — $)k(s)e(s)Te(r)' " ds)e(t)ﬁlM(y)

_ (k*lw (/ot a(t — s)k(s) ((a ]:(lj))(S)) - ((a 28(0> - ds)

() (@ R R
_(k*a)(f)</o a4 () (o) W‘“)

/t a(t — s)k(s)e(s)"™! dS) M(y)
0
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for all #>0. Note that t—(axk)(¢) and t—k(¢) are nondecreasing. Hence, for

0<B<1 we have (EZi’;g((f)))lfﬁsl and (%)ﬁ<l whenever 0 <s< . In view of (C2) we

get that the last equation is bounded by e(t)ﬁflM(y). Hence, ||Byy|| = O(e(t)ﬁfl).

Finally, applying the abstract Strong Ergodic Theorem from [18] and Theorems 1
and 2 from [22] concerned with optimal convergence and non-optimal convergence
rates of ergodic limits, we obtain the assertions of the theorem. [

A Banach space X is called a Grothendieck space if every weakly” convergent
sequence in X* is weakly convergent and is to said to have the Dunford—Pettis
property if every weakly compact operator from X to any Banach space maps weakly
compact sets into norm compact sets. The spaces L™, H*, and B(S,X) are
particular examples of Grothendieck spaces with the Dunford—Pettis property.

Let 4 be an operator on X, and let Y be a closed subspace of X. The part of 4 in
Y is the operator Ay on Y defined by

D(Ay) ={yeD(A)nY: Aye Y},

Ayy = Ay.

Theorem 2 (Uniform Ergodic Theorem). Let A be the generator of an (a,k)-
regularized family {R(t)},- such that

IR\ <MK(t) for all 130,

then
(a) Under condition (C1) the following assertions are equivalent:
(i) {4} is uniformly ergodic;
(i) || B, | Ran(4)|| = O(1);
(iii) By is bounded and ||B,| Ran(A) — By'|| >0 as t— oo;
(iv) Ran(A) is closed,
(v) Ran(A?) is closed;
(vi) X = Ker(A) ® Ran(A).
Moreover, the convergence of the limits has order 0(%)

(b) Assume condition (C) and if D(A) is a Grothendieck space with the Dunford—

Pettis property, and D(A) <= D(P), then ||A,|m - P|m|| = 0((01:,(;))0)).

Proof. Under condition (C1), we have that (E1)—(E3) are satisfied. Thus assertions in
(a) follow from the Uniform Ergodic Theorem stated in [19, Theorem 1].

To prove (b), it suffices to show that the part of 4 in D(A4) has dense domain in
D(A) and hence, the assertion follows from Shaw [23, Theorem 2.3]. In fact, let
xeD(A), then by (R2) we have that 4,xe D(A) for all £>0. Moreover, by (R3),

1 k(1)
— R(t - 7
@00 " G

AAix = xeD(A).
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Hence, 4,xe D(Az DU >) On the other hand, note that for xe D(A4),

i

1 t
- <W/ a(t - 5)|| R(s) x| ds

M/ (t—3) ds||A Il
M/ s) ds||Ax]|,

since k(s)/k(t)<1 whenever s<t. Thus, for all xe D(A4), f((;x—wc as t—0". Hence,
given >0 there is 7) >0 such that

e = ol = || RO~ x
= W[(a*&()x—(a*m()]
o k a(t — 5)[R(s)x — k(s)x] ds
<a*k><>/o“(’ Ple) fff;?x—x b

whenever r<ty. O

Proposition 1. Suppose that A is the generator of an (a,k)-regularized family
{R(1)},5¢, where a(t) and k(t) are Laplace transformable and d(/.) #0, k(1) #0 for all
Re 2.>0. Assume also that condition (C1) is satisfied and

|R(2)[| < Mk(2)  for all 1>0.

If d()) has a pole in C.., then X = Ker(A)@® Ran(A), and all the assertions in part (a)
of the uniform ergodic theorem are always true.

Proof. Let 4peC, be a pole of d(A) of order n. Then there is an ¢>0 such that
V ={zeC: 0<|z|<e}<=p(A4). For all A near to 4y, we have

‘ (a) )

1d(A)(T = (7))~

Q)
—
~
=

Pan

N
=<
[N

Hence, for all ze V,

1z = A< M/l2].
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Thus, zero is at most a pole of order 1 of (z — 4)~'. Now the claim follows from [24,
Chapter VIII.8] and Theorem 2. [

Remark 3. We point out that we can take control of the approximation rates in
Theorem 2 above by taking m-times the convolution product of a(z) with itself.
Towards this end, let me N be given and define

ai(t) = a(t), an(t) =(axax---xa)(t) for m=2.

If we replace in Eq. (3) the function a(z) by a,(f) then, whenever R(¢) is an (a, k)-
regularized family, we obtain the means

1 t
Amx:i/ an(t —s)R(s)xds t>0, xeX
T @ Jo IR
and
1 t
B'x=———— t—s)R ds t>0 X.
t (k*am)(l‘)/o am-H( S) (S)X s >0, xe
In particular, for k(¢) :#;) we recover the approximation processes O, (f)

defined by Shaw in [23, p. 364] (see also [11]), and the condition (C) can be stated as
follows:

(C,,) For a fixed me N, suppose that a(t) is positive and k(¢) is nondecreasing and
positive, satisfying

im L:
A e anm
sup KOL=an)(®) -

>0 (k*am)(t)
and
lim (@ ¥ K)(0) _ 0.
1> (ay * k)(1)
It is not difficult to see that if {R(?)},- is an (a, k)-regularized family such that
[IR(1)[| < Mk(1), 120,
then under conditions (C,,) the hypothesis (E1)-(ES) are satisfied. Thus, all the
conclusions in this section remain true with the modifications indicated above.

An Example. Let X := C[0,1] and let 4: D(A)—> X be defined by Af =f’ where
D(A) = {feC"[0,1]: f£(0) =£(1)}. Let fe X, then

ﬂw=AV®ﬂ+4AKﬂﬂjKﬂm@%}

Moreover, for feKer(A)nRan(A), Af =0 and f = Ag=¢', ge D(A). But [/ =0
and ¢’ = f implies f(x) = ¢ and ¢'(x) = ¢. We conclude that g(x) = c¢x. On the other
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hand, ge D(A) implies 0 = g(0) = g(1) = c. Therefore, ¢ = 0, showing that f(x) = 0.
Hence, we obtain that Ker(A4) nRan(A) = {0} and

X = Ker(A)® Ran(A).

In particular, we have

1
P(f)(1) :/0 f(s)ds for all t€]0,1].

It is not difficult to see that A4 is the generator of a once-integrated semi-
group {S(1)},5, with [|S(z)[|<Mt for all 1>0. Let a(r) be real and positive.
Also suppose that a(r) is a completely positive kernel (see [17] for definitions).
Then, by [13, Theorem 3.7], A is the generator of a (a,k)-regularized family
{R(#)},>( where

k(1) = (1% a)(2).

Clearly, k(1) is positive and nondecreasing. Hence, assuming that

(I xa)(r)

=w (Lxaxa)(r)

3

we have by (a) of Theorem 2,

lim ;)(Z)/Ora(t—s)(R(s)f)(r) ds:/olf(s) ds, te0,1].

t>o (Ixaxa

3. Abelian ergodic theorems with rates of approximation

Assume that a(¢) and k(1) are of subexponential growth, i.e. [ e *a(t) di< oo for
all e>0. Then d(4), the Laplace transform of a(z) (resp. k(¢)) exists for all 1>0. In
the sequel, we suppose that d(4)#0 and k(1) #0 for all 2> 0.

Assume ﬁep(A) for all Re A>0 and define the nets

1 /1 -
A/l e YETY #—A for all A1>0
a(2)\a(2)

and

| -1
B, = <d(2) — A> for all A>0.

Note that under condition (C1), we have lim;_ ¢+ ﬁ =0, since lim;_od(1) =

lim,_, o, (1 *a)(t) = oo by Remark 1. Thus, 0ep(4). Also by the positivity of k(z),

k(0)#0 and hence sup,_;, ﬁ))< 0
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Proposition 2. Suppose A is the generator of an (a,k)-regularized family {R(t)},,
such that

IR(0)|| < Mk(t) for all 1>0.

Then, under (C1), the net (A4;),. , is A-ergodic and (B,), ., is the companion net, with

and  f(3) = e(A), 0<p<l,
for all 1>0.

Proof. To show (E1) note that ||R(¢)||<Mk(z). Then ||R(2)||<MK(2) for 7.>0.
Moreover,

(I —d(A)A)R() = k(I >0,

by Definition 1. Hence,

thus ||4,]| = HE&'?“SM, for 1>0. On the other hand, B, = —d(1)A,. Hence,

BA+A,=— d(},)AﬁA + A,
— AT — d(2)4)

_ (11) <$ - A) i aoa)

a
=1

on D(A). Since A commutes with B, and A4;, it follows that B,A<I — A4, for 1> 0,
and (E2) follows.
To prove (E3), note that by Definition 1

1
(4)
Then ||A4;]|< (M + V)5 = (M + 1)e(4), where e(2) = z; =0 as 2—0 by (C1) and

a(4)

AA; =

(4; —1).

Q

Remark 1.
To show (E4), note that

B, — d())AB; = (I — d(1)A)B;
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Thus, B, = —d(A)(I — AB;). Now for x* € Ran(A)* and xe X it follows that
{x,Bix* > ={(Bjx,x")
= —d(A){(I—A4B;)x,x*)
= —d(A){x,x" ) +d(4){AB;x,x* )
= —d(A){x,x" ).

Hence, Bjx* = —d(4)x* for x*€Ran(A)* and since lim;_, ¢+ d(1) = oo, the proof of
(E4) follows.

To show (ES), assume that ||A;|| < Mf (%), where f(7) = e(A)? (0<p<1). Notice
that 0 <e(4)<f(4) since ( —0 as 21— 0" obtaining that (L)l 230

Since B, = —d(A)A4,,

||B:|| =d(2)[|4,]]
< Md(2)f (4)
gl (A)
Hence, ||B;|| = (e(‘))) Now if ||[4;]] = o(f (1)) as A—07, then
as /1—>O+. Hence,
||B:]| = o(d(2)f (7))
(1)
‘O(eu))
as 2—0"t. O

Applying Proposition 2 together with Theorems 1 and 2 of [22] and 2.3 of [23], we
obtain

Theorem 3 (Strong Ergodic Theorem with rates). Let A be the generator of an (a, k)-
regularized family {R(t)}, such that condition (C1) is satisfied and

[|R()||<Mk(t) for all t=0.
Then -
(i) For 0<f<1 and xe Ker(A) ® Ran(A), we have
|4;x — Px|| = O(la(2)] ")
< K([a(2)]™", x, Ker(4) @ Ran(A4), D(Bo), || - |[5,) = O([d(1)] ")

<> xe[D(By)] (in case f=1).

Ker(A)@ Ran(A)
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(i) For each ye D(B)) and 0< <1, we have
|4y + 47 'yl = ola(2)] ")
< K([a(2)]™", Biy, Ran(4), D(B1),|| - |[5,) = O(d(1)] ")
<>y A(D(A) A [D(B)gy)  (in case f = 1)

(ii)) Ran(A) is not closed if and only if for every (some) 0<f <1 there exists an
element yge Ran(A) such that

[4:7pll = O(d()] ") and || Azy5l|#0([a(2)] ).

Theorem 4 (Uniform Ergodic Theorem). Let A be the generator of an (a,k)-
regularized family {R(t)}, such that condition (C1) is satisfied and

IR(0)|| < Mk(£) for all 1>0.

Then
(a) the following assertions are equivalent
(1) D(P) = X and ||4; — P||—0 as t— oo;
(i) ||, | Ran(A)]| = O(1);
(iii) B is bounded and ||B; | Ran(A4) + A7'|| -0 as t— oo;
(iv) Ran(A) is closed,
(v) Ran(A?) is closed;
(vi) X = Ker(A) @ Ran(A).
Moreover, the convergence of the limits has order O([a(1)]™").
(b) If D(A) is a Grothendieck space with the Dunford-Pettis property, and if

D(A)=D(P), then || 4;]555 — Plyrgll = 0(a(2)] ™).

4. Application to r-times integrated solution families

A family {R(#)},., in B(X) is called an r-times integrated resolvent family if
{R()},5 satisfies Definition 1 with k(z) = (see [2,16] for the case r = neN and

[23] for the general case).
The r-times integrated solution families allow one to find and study the behavior
of the solution for the following integral equation:

u(t) =f(0) + /Oza(t —5)Au(s) ds, t=0, (13)

r+1

where f e L' (Ry; X). Ergodic properties of r-times integrated resolvent families have
been discussed in the paper [23]. In this section, we recover Shaw’s results in terms of
the following means of Cesaro type (see Remark 3):

Cir+1) [
Alx = ———— n(t — S)R(s)x ds, 0, X,
V'x e a0 /0 am(t —$)R(s)xds, t>0, xe
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with companion net

71 —F(V—|— 1)
th:m(amﬂ*R)(t)x, t>0, xeX.

Observe that condition (C) now takes the form
(C)" a(t) is positive and, for fixed me N,
Zl’

lim —
o ey

(1 ay)(t)

lim ——"2 2 < o0
1= (1" % ap)(1) ’

(f" % axym)(t)

im —— " = oo.
>0 (172 % ap)(1)

Now, applying Theorem 1 we can state the following strong ergodic theorem with
rates (see Shaw [23, Theorem 3.2, p. 365]).

Theorem 5. Let {R(1)},o, be an r-times integrated solution family for Eq. (13)
satisfying
[|R(|| <Mt for all =0

and assume condition (C,,)". Then the same conclusions of Theorem 1 are true, with
Px = lim A'x
t— o0

for all xe D(P) = Ker(A) ® Ran(A), and

r 1
By ——tim UFD

=0 (ap * 1) (1) (a1 * R)(1)y

for all xe D(By) = A(D(A)n Ran(A)). Moreover, the rate of convergence has order
”

(a,,,*t”)(l)'
Recall that a p-times integrated semigroup (peNy) is called tempered if
IR(D[[<ct” (120)

for some ¢>0. A direct application of the above results is the following:

Proposition 3. Let {R(t)},., be an r-times integrated tempered semigroup with
generator A. Then for fixed meN we have that the limit

r 1) 1 !
Px = lim Lrdm+1) / (1 — )" "' R(s)x ds
0

15 0 F(m) mtr
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exists for all xe Ker(A) ® Ran(A) and is a bounded linear projection with

-oft)

Cr+m+1) 1 ! e
HWW”/O([_S) "R(s)x ds — Px

for all xe Ker(A)@® Ran(A4).

5. Application to k-convoluted semigroups

The notion of K(¢)-convoluted semigroups and local-convoluted semigroups was
introduced in 1995 by Cioranescu [6] and Cioranescu and Lumer [7]. The concept
seems easier to handle than distribution and ultradistribution semigroups to which
they turn out to be equivalent. In this section, by making use of our results, we are
able to develop the corresponding ergodic theory.

In our terminology, a k(f)-convoluted semigroup corresponds to a (k,1)-
regularized family {R(?)}, .

Our main results in this section can be stated as follows:

Theorem 6. Let A be the generator of a k-convoluted semigroup {R(1)},, satisfying
IR(1)||< Mk(t)  for all =0

and assume that k(t) is positive and nondecreasing and such that (C) is satisfied. More
precisely let
k(1)

R TESTP i

sup O _
o (T k() ="

= (1% k)(1)

Then the same conclusions of Theorem 1 are valid where

. 1 !
Px = tl_lp; m/o R(s)x ds

for all xe D(P) = Ker(A) ® Ran(A),

. 1 !
By = — lim T 00 /0 (t —$)R(s)yds

t— 0

for all ye D(By) = A(D(A) nRan(A)). Moreover, the rate of convergence of the limits

k(1)
has order TRI0R
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Theorem 7 (Uniform Ergodic Theorem). Let A be the generator of a k-convoluted
semigroup {R(t)},> satisfying
[|R()||<Mk(t) for all t=0,

and assume (C). Then assertions (a) and (b) of Theorem 2 are true, with a(t) = 1.

Regarding the abelian ergodic theorems for k-convoluted semigroups, we notice
that there is no dependence on the function k(z) for the ergodic nets A; =
A —A) " and B, = —(4— 4)™", 7>0, by the general definition given in Section 3.
Moreover, the rate of convergence depends only on the asymptotic behavior of
aA) = i as A—oo. Thus, the corresponding abelian ergodic theorems for the
generator A yield the same type of results as in the semigroup case.

6. Application to integral resolvents
We consider the integral equation
R(t)x =a(t)x+ A /Or a(t —s)R(s)xds, 1=0. (14)
A solution of (14) is called integral resolvent for the Volterra equation
u(t) = £ (1) +/Ola(t—s)Au(s) ds, 130, (15)

where f'e C(Ry; X); see [17] and the references therein.
Suppose R(¢) is an integral resolvent for (15). Then

u(t):f(t)—i—A/OIR(t—s)f(s)ds, >0, (16)

yields a mild solution to (15).

Integral resolvents have been studied extensively in the finite-dimensional case,
where it is usually called the resolvent for (15); see, e.g. the monograph by
Gripenberg et al. [9]. For equations with unbounded operators in infinite
dimensions, the theory has been developed by many authors; see, e.g., [17, Theorem
1.4 and Section 10.6], and also the recent works [14,15]. Note that, in our
terminology, an integral resolvent corresponds to an (a, a)-regularized family.

Following the same arguments as in the sections above, we can state ergodic
theorems with rates for integral resolvents. The ergodic net is given by

Ax ::(a*lw/ota(l—s)R(s)xds; xeX, t>0 (17)

with companion net

%/0 a([—s)/osa(s—r)R(r)xdrds; xeX, t>0.

B[x:
(axa
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Also, the estimator of the convergence rate of A4, is

~a(1)
W) =Tara
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